

Flask-Security

Flask-Security allows you to quickly add common security mechanisms to your
Flask application. They include:

	Session based authentication

	Role management

	Password hashing

	Basic HTTP authentication

	Token based authentication

	Token based account activation (optional)

	Token based password recovery / resetting (optional)

	User registration (optional)

	Login tracking (optional)

	JSON/Ajax Support

Many of these features are made possible by integrating various Flask extensions
and libraries. They include:

	Flask-Login [https://flask-login.readthedocs.org/en/latest/]

	Flask-Mail [http://packages.python.org/Flask-Mail/]

	Flask-Principal [http://packages.python.org/Flask-Principal/]

	Flask-WTF [http://packages.python.org/Flask-WTF/]

	itsdangerous [http://packages.python.org/itsdangerous/]

	passlib [http://packages.python.org/passlib/]

Additionally, it assumes you’ll be using a common library for your database
connections and model definitions. Flask-Security supports the following Flask
extensions out of the box for data persistence:

	Flask-SQLAlchemy [http://pypi.python.org/pypi/flask-sqlalchemy/]

	Flask-MongoEngine [http://pypi.python.org/pypi/flask-mongoengine/]

	Flask-Peewee [http://pypi.python.org/pypi/flask-peewee/]

	PonyORM [http://pypi.python.org/pypi/pony/]

Contents

	Features

	Configuration

	Quick Start

	Basic SQLAlchemy Application

	Basic SQLAlchemy Application with session

	Basic MongoEngine Application

	Basic Peewee Application

	Mail Configuration

	Proxy Configuration

	Models

	Customizing Views

	API

	Flask-Security Changelog

	Development Lead

	Patches and Suggestions

Features

Flask-Security allows you to quickly add common security mechanisms to your
Flask application. They include:

Session Based Authentication

Session based authentication is fulfilled entirely by the Flask-Login [https://flask-login.readthedocs.org/en/latest/]
extension. Flask-Security handles the configuration of Flask-Login automatically
based on a few of its own configuration values and uses Flask-Login’s
alternative token [https://flask-login.readthedocs.io/en/latest/#alternative-tokens] feature for remembering users when their session has
expired.

Role/Identity Based Access

Flask-Security implements very basic role management out of the box. This means
that you can associate a high level role or multiple roles to any user. For
instance, you may assign roles such as Admin, Editor, SuperUser, or a
combination of said roles to a user. Access control is based on the role name
and all roles should be uniquely named. This feature is implemented using the
Flask-Principal [http://packages.python.org/Flask-Principal/] extension. If you’d like to implement more granular access
control, you can refer to the Flask-Principal documentation on this topic [http://packages.python.org/Flask-Principal/#granular-resource-protection].

Password Hashing

Password hashing is enabled with passlib [http://packages.python.org/passlib/]. Passwords are hashed with the
bcrypt [https://en.wikipedia.org/wiki/Bcrypt] function by default but you can easily configure the hashing
algorithm. You should always use an hashing algorithm in your production
environment. You may also specify to use HMAC with a configured salt value in
addition to the algorithm chosen. Bear in mind passlib does not assume which
algorithm you will choose and may require additional libraries to be installed.

Basic HTTP Authentication

Basic HTTP authentication is achievable using a simple view method decorator.
This feature expects the incoming authentication information to identify a user
in the system. This means that the username must be equal to their email address.

Token Authentication

Token based authentication is enabled by retrieving the user auth token by
performing an HTTP POST with the authentication details as JSON data against the
authentication endpoint. A successful call to this endpoint will return the
user’s ID and their authentication token. This token can be used in subsequent
requests to protected resources. The auth token is supplied in the request
through an HTTP header or query string parameter. By default the HTTP header
name is Authentication-Token and the default query string parameter name is
auth_token. Authentication tokens are generated using the user’s password.
Thus if the user changes his or her password their existing authentication token
will become invalid. A new token will need to be retrieved using the user’s new
password.

Email Confirmation

If desired you can require that new users confirm their email address.
Flask-Security will send an email message to any new users with a confirmation
link. Upon navigating to the confirmation link, the user will be automatically
logged in. There is also view for resending a confirmation link to a given email
if the user happens to try to use an expired token or has lost the previous
email. Confirmation links can be configured to expire after a specified amount
of time.

Password Reset/Recovery

Password reset and recovery is available for when a user forgets his or her
password. Flask-Security sends an email to the user with a link to a view which
they can reset their password. Once the password is reset they are automatically
logged in and can use the new password from then on. Password reset links can
be configured to expire after a specified amount of time.

User Registration

Flask-Security comes packaged with a basic user registration view. This view is
very simple and new users need only supply an email address and their password.
This view can be overridden if your registration process requires more fields.

Login Tracking

Flask-Security can, if configured, keep track of basic login events and
statistics. They include:

	Last login date

	Current login date

	Last login IP address

	Current login IP address

	Total login count

JSON/Ajax Support

Flask-Security supports JSON/Ajax requests where appropriate. Just remember that
all endpoints require a CSRF token just like HTML views. More specifically
JSON is supported for the following operations:

	Login requests

	Registration requests

	Change password requests

	Confirmation requests

	Forgot password requests

	Passwordless login requests

Command Line Interface

Basic Click [http://packages.python.org/Click/] commands for managing users and roles are automatically
registered. They can be completely disabled or their names can be changed.
Run flask --help and look for users and roles.

Configuration

The following configuration values are used by Flask-Security:

Core

	SECURITY_BLUEPRINT_NAME
	Specifies the name for the
Flask-Security blueprint. Defaults to
security.

	SECURITY_CLI_USERS_NAME
	Specifies the name for the command
managing users. Disable by setting
False. Defaults to users.

	SECURITY_CLI_ROLES_NAME
	Specifies the name for the command
managing roles. Disable by setting
False. Defaults to roles.

	SECURITY_URL_PREFIX
	Specifies the URL prefix for the
Flask-Security blueprint. Defaults to
None.

	SECURITY_SUBDOMAIN
	Specifies the subdomain for the
Flask-Security blueprint. Defaults to
None.

	SECURITY_FLASH_MESSAGES
	Specifies whether or not to flash
messages during security procedures.
Defaults to True.

	SECURITY_I18N_DOMAIN
	Specifies the name for domain
used for translations.
Defaults to flask_security.

	SECURITY_PASSWORD_HASH
	Specifies the password hash algorithm to
use when hashing passwords. Recommended
values for production systems are
bcrypt, sha512_crypt, or
pbkdf2_sha512. Defaults to
bcrypt.

	SECURITY_PASSWORD_SALT
	Specifies the HMAC salt. This is only
used if the password hash type is set
to something other than plain text.
Defaults to None.

	SECURITY_PASSWORD_SINGLE_HASH
	Specifies that passwords should only be
hashed once. By default, passwords are
hashed twice, first with
SECURITY_PASSWORD_SALT, and then
with a random salt. May be useful for
integrating with other applications.
Defaults to False.

	SECURITY_HASHING_SCHEMES
	List of algorithms used for
creating and validating tokens.
Defaults to sha256_crypt.

	SECURITY_DEPRECATED_HASHING_SCHEMES
	List of deprecated algorithms used for
creating and validating tokens.
Defaults to hex_md5.

	SECURITY_PASSWORD_HASH_OPTIONS
	Specifies additional options to be passed
to the hashing method.

	SECURITY_EMAIL_SENDER
	Specifies the email address to send
emails as. Defaults to value set
to MAIL_DEFAULT_SENDER if
Flask-Mail is used otherwise
no-reply@localhost.

	SECURITY_TOKEN_AUTHENTICATION_KEY
	Specifies the query string parameter to
read when using token authentication.
Defaults to auth_token.

	SECURITY_TOKEN_AUTHENTICATION_HEADER
	Specifies the HTTP header to read when
using token authentication. Defaults to
Authentication-Token.

	SECURITY_TOKEN_MAX_AGE
	Specifies the number of seconds before
an authentication token expires.
Defaults to None, meaning the token
never expires.

	SECURITY_DEFAULT_HTTP_AUTH_REALM
	Specifies the default authentication
realm when using basic HTTP auth.
Defaults to Login Required

URLs and Views

	SECURITY_LOGIN_URL
	Specifies the login URL. Defaults to /login.

	SECURITY_LOGOUT_URL
	Specifies the logout URL. Defaults to
/logout.

	SECURITY_REGISTER_URL
	Specifies the register URL. Defaults to
/register.

	SECURITY_RESET_URL
	Specifies the password reset URL. Defaults to
/reset.

	SECURITY_CHANGE_URL
	Specifies the password change URL. Defaults to
/change.

	SECURITY_CONFIRM_URL
	Specifies the email confirmation URL. Defaults
to /confirm.

	SECURITY_POST_LOGIN_VIEW
	Specifies the default view to redirect to after
a user logs in. This value can be set to a URL
or an endpoint name. Defaults to /.

	SECURITY_POST_LOGOUT_VIEW
	Specifies the default view to redirect to after
a user logs out. This value can be set to a URL
or an endpoint name. Defaults to /.

	SECURITY_CONFIRM_ERROR_VIEW
	Specifies the view to redirect to if a
confirmation error occurs. This value can be set
to a URL or an endpoint name. If this value is
None, the user is presented the default view
to resend a confirmation link. Defaults to
None.

	SECURITY_POST_REGISTER_VIEW
	Specifies the view to redirect to after a user
successfully registers. This value can be set to
a URL or an endpoint name. If this value is
None, the user is redirected to the value of
SECURITY_POST_LOGIN_VIEW. Defaults to
None.

	SECURITY_POST_CONFIRM_VIEW
	Specifies the view to redirect to after a user
successfully confirms their email. This value
can be set to a URL or an endpoint name. If this
value is None, the user is redirected to the
value of SECURITY_POST_LOGIN_VIEW. Defaults
to None.

	SECURITY_POST_RESET_VIEW
	Specifies the view to redirect to after a user
successfully resets their password. This value
can be set to a URL or an endpoint name. If this
value is None, the user is redirected to the
value of SECURITY_POST_LOGIN_VIEW. Defaults
to None.

	SECURITY_POST_CHANGE_VIEW
	Specifies the view to redirect to after a user
successfully changes their password. This value
can be set to a URL or an endpoint name. If this
value is None, the user is redirected to the
value of SECURITY_POST_LOGIN_VIEW. Defaults
to None.

	SECURITY_UNAUTHORIZED_VIEW
	Specifies the view to redirect to if a user
attempts to access a URL/endpoint that they do
not have permission to access. If this value is
None, the user is presented with a default
HTTP 403 response. Defaults to None.

Template Paths

	SECURITY_FORGOT_PASSWORD_TEMPLATE
	Specifies the path to the template for
the forgot password page. Defaults to
security/forgot_password.html.

	SECURITY_LOGIN_USER_TEMPLATE
	Specifies the path to the template for
the user login page. Defaults to
security/login_user.html.

	SECURITY_REGISTER_USER_TEMPLATE
	Specifies the path to the template for
the user registration page. Defaults to
security/register_user.html.

	SECURITY_RESET_PASSWORD_TEMPLATE
	Specifies the path to the template for
the reset password page. Defaults to
security/reset_password.html.

	SECURITY_CHANGE_PASSWORD_TEMPLATE
	Specifies the path to the template for
the change password page. Defaults to
security/change_password.html.

	SECURITY_SEND_CONFIRMATION_TEMPLATE
	Specifies the path to the template for
the resend confirmation instructions
page. Defaults to
security/send_confirmation.html.

	SECURITY_SEND_LOGIN_TEMPLATE
	Specifies the path to the template for
the send login instructions page for
passwordless logins. Defaults to
security/send_login.html.

Feature Flags

	SECURITY_CONFIRMABLE
	Specifies if users are required to confirm their email
address when registering a new account. If this value
is True, Flask-Security creates an endpoint to handle
confirmations and requests to resend confirmation
instructions. The URL for this endpoint is specified
by the SECURITY_CONFIRM_URL configuration option.
Defaults to False.

	SECURITY_REGISTERABLE
	Specifies if Flask-Security should create a user
registration endpoint. The URL for this endpoint is
specified by the SECURITY_REGISTER_URL
configuration option. Defaults to False.

	SECURITY_RECOVERABLE
	Specifies if Flask-Security should create a password
reset/recover endpoint. The URL for this endpoint is
specified by the SECURITY_RESET_URL configuration
option. Defaults to False.

	SECURITY_TRACKABLE
	Specifies if Flask-Security should track basic user
login statistics. If set to True, ensure your
models have the required fields/attributes. Be sure to
use ProxyFix [http://flask.pocoo.org/docs/0.10/deploying/wsgi-standalone/#proxy-setups] if you are using a proxy. Defaults to
False

	SECURITY_PASSWORDLESS
	Specifies if Flask-Security should enable the
passwordless login feature. If set to True, users
are not required to enter a password to login but are
sent an email with a login link. This feature is
experimental and should be used with caution. Defaults
to False.

	SECURITY_CHANGEABLE
	Specifies if Flask-Security should enable the
change password endpoint. The URL for this endpoint is
specified by the SECURITY_CHANGE_URL configuration
option. Defaults to False.

Email

	SECURITY_EMAIL_SUBJECT_REGISTER
	Sets the subject for the
confirmation email. Defaults
to Welcome

	SECURITY_EMAIL_SUBJECT_PASSWORDLESS
	Sets the subject for the
passwordless feature. Defaults
to Login instructions

	SECURITY_EMAIL_SUBJECT_PASSWORD_NOTICE
	Sets subject for the password
notice. Defaults to Your
password has been reset

	SECURITY_EMAIL_SUBJECT_PASSWORD_RESET
	Sets the subject for the
password reset email. Defaults
to Password reset
instructions

	SECURITY_EMAIL_SUBJECT_PASSWORD_CHANGE_NOTICE
	Sets the subject for the
password change notice.
Defaults to Your password
has been changed

	SECURITY_EMAIL_SUBJECT_CONFIRM
	Sets the subject for the email
confirmation message. Defaults
to Please confirm your
email

	SECURITY_EMAIL_PLAINTEXT
	Sends email as plaintext using
*.txt template. Defaults
to True.

	SECURITY_EMAIL_HTML
	Sends email as HTML using
*.html template. Defaults
to True.

Miscellaneous

	SECURITY_USER_IDENTITY_ATTRIBUTES
	Specifies which attributes of the
user object can be used for login.
Defaults to ['email'].

	SECURITY_SEND_REGISTER_EMAIL
	Specifies whether registration
email is sent. Defaults to
True.

	SECURITY_SEND_PASSWORD_CHANGE_EMAIL
	Specifies whether password change
email is sent. Defaults to
True.

	SECURITY_SEND_PASSWORD_RESET_EMAIL
	Specifies whether password reset
email is sent. Defaults to
True.

	SECURITY_SEND_PASSWORD_RESET_NOTICE_EMAIL
	Specifies whether password reset
notice email is sent. Defaults to
True.

	SECURITY_CONFIRM_EMAIL_WITHIN
	Specifies the amount of time a
user has before their confirmation
link expires. Always pluralized
the time unit for this value.
Defaults to 5 days.

	SECURITY_RESET_PASSWORD_WITHIN
	Specifies the amount of time a
user has before their password
reset link expires. Always
pluralized the time unit for this
value. Defaults to 5 days.

	SECURITY_LOGIN_WITHIN
	Specifies the amount of time a
user has before a login link
expires. This is only used when
the passwordless login feature is
enabled. Always pluralized the
time unit for this value.
Defaults to 1 days.

	SECURITY_LOGIN_WITHOUT_CONFIRMATION
	Specifies if a user may login
before confirming their email when
the value of
SECURITY_CONFIRMABLE is set to
True. Defaults to False.

	SECURITY_CONFIRM_SALT
	Specifies the salt value when
generating confirmation
links/tokens. Defaults to
confirm-salt.

	SECURITY_RESET_SALT
	Specifies the salt value when
generating password reset
links/tokens. Defaults to
reset-salt.

	SECURITY_LOGIN_SALT
	Specifies the salt value when
generating login links/tokens.
Defaults to login-salt.

	SECURITY_REMEMBER_SALT
	Specifies the salt value when
generating remember tokens.
Remember tokens are used instead
of user ID’s as it is more
secure. Defaults to
remember-salt.

	SECURITY_DEFAULT_REMEMBER_ME
	Specifies the default “remember
me” value used when logging in
a user. Defaults to False.

	SECURITY_DATETIME_FACTORY
	Specifies the default datetime
factory. Defaults to
datetime.datetime.utcnow.

Messages

The following are the messages Flask-Security uses. They are tuples; the first
element is the message and the second element is the error level.

The default messages and error levels can be found in core.py.

	SECURITY_MSG_ALREADY_CONFIRMED

	SECURITY_MSG_CONFIRMATION_EXPIRED

	SECURITY_MSG_CONFIRMATION_REQUEST

	SECURITY_MSG_CONFIRMATION_REQUIRED

	SECURITY_MSG_CONFIRM_REGISTRATION

	SECURITY_MSG_DISABLED_ACCOUNT

	SECURITY_MSG_EMAIL_ALREADY_ASSOCIATED

	SECURITY_MSG_EMAIL_CONFIRMED

	SECURITY_MSG_EMAIL_NOT_PROVIDED

	SECURITY_MSG_FORGOT_PASSWORD

	SECURITY_MSG_INVALID_CONFIRMATION_TOKEN

	SECURITY_MSG_INVALID_EMAIL_ADDRESS

	SECURITY_MSG_INVALID_LOGIN_TOKEN

	SECURITY_MSG_INVALID_PASSWORD

	SECURITY_MSG_INVALID_REDIRECT

	SECURITY_MSG_INVALID_RESET_PASSWORD_TOKEN

	SECURITY_MSG_LOGIN

	SECURITY_MSG_LOGIN_EMAIL_SENT

	SECURITY_MSG_LOGIN_EXPIRED

	SECURITY_MSG_PASSWORDLESS_LOGIN_SUCCESSFUL

	SECURITY_MSG_PASSWORD_CHANGE

	SECURITY_MSG_PASSWORD_INVALID_LENGTH

	SECURITY_MSG_PASSWORD_IS_THE_SAME

	SECURITY_MSG_PASSWORD_MISMATCH

	SECURITY_MSG_PASSWORD_NOT_PROVIDED

	SECURITY_MSG_PASSWORD_NOT_SET

	SECURITY_MSG_PASSWORD_RESET

	SECURITY_MSG_PASSWORD_RESET_EXPIRED

	SECURITY_MSG_PASSWORD_RESET_REQUEST

	SECURITY_MSG_REFRESH

	SECURITY_MSG_RETYPE_PASSWORD_MISMATCH

	SECURITY_MSG_UNAUTHORIZED

	SECURITY_MSG_USER_DOES_NOT_EXIST

Quick Start

	Basic SQLAlchemy Application

	Basic SQLAlchemy Application with session

	Basic MongoEngine Application

	Basic Peewee Application

	Mail Configuration

	Proxy Configuration

Basic SQLAlchemy Application

SQLAlchemy Install requirements

$ mkvirtualenv <your-app-name>
$ pip install flask-security flask-sqlalchemy

SQLAlchemy Application

The following code sample illustrates how to get started as quickly as
possible using SQLAlchemy:

from flask import Flask, render_template
from flask_sqlalchemy import SQLAlchemy
from flask_security import Security, SQLAlchemyUserDatastore, \
 UserMixin, RoleMixin, login_required

Create app
app = Flask(__name__)
app.config['DEBUG'] = True
app.config['SECRET_KEY'] = 'super-secret'
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite://'

Create database connection object
db = SQLAlchemy(app)

Define models
roles_users = db.Table('roles_users',
 db.Column('user_id', db.Integer(), db.ForeignKey('user.id')),
 db.Column('role_id', db.Integer(), db.ForeignKey('role.id')))

class Role(db.Model, RoleMixin):
 id = db.Column(db.Integer(), primary_key=True)
 name = db.Column(db.String(80), unique=True)
 description = db.Column(db.String(255))

class User(db.Model, UserMixin):
 id = db.Column(db.Integer, primary_key=True)
 email = db.Column(db.String(255), unique=True)
 password = db.Column(db.String(255))
 active = db.Column(db.Boolean())
 confirmed_at = db.Column(db.DateTime())
 roles = db.relationship('Role', secondary=roles_users,
 backref=db.backref('users', lazy='dynamic'))

Setup Flask-Security
user_datastore = SQLAlchemyUserDatastore(db, User, Role)
security = Security(app, user_datastore)

Create a user to test with
@app.before_first_request
def create_user():
 db.create_all()
 user_datastore.create_user(email='matt@nobien.net', password='password')
 db.session.commit()

Views
@app.route('/')
@login_required
def home():
 return render_template('index.html')

if __name__ == '__main__':
 app.run()

Basic SQLAlchemy Application with session

SQLAlchemy Install requirements

$ mkvirtualenv <your-app-name>
$ pip install flask-security sqlalchemy

Also, you can use the extension Flask-SQLAlchemy-Session documentation [http://flask-sqlalchemy-session.readthedocs.io/en/v1.1/].

SQLAlchemy Application

The following code sample illustrates how to get started as quickly as
possible using SQLAlchemy in a declarative way [http://flask.pocoo.org/docs/0.12/patterns/sqlalchemy/#declarative]:

We are gonna split the application at least in three files: app.py, database.py
and models.py. You can also do the models a folder and spread your tables there.

	app.py

from flask import Flask
from flask_security import Security, login_required, \
 SQLAlchemySessionUserDatastore
from database import db_session, init_db
from models import User, Role

Create app
app = Flask(__name__)
app.config['DEBUG'] = True
app.config['SECRET_KEY'] = 'super-secret'

Setup Flask-Security
user_datastore = SQLAlchemySessionUserDatastore(db_session,
 User, Role)
security = Security(app, user_datastore)

Create a user to test with
@app.before_first_request
def create_user():
 init_db()
 user_datastore.create_user(email='matt@nobien.net', password='password')
 db_session.commit()

Views
@app.route('/')
@login_required
def home():
 return render('Here you go!')

if __name__ == '__main__':
 app.run()

	database.py

from sqlalchemy import create_engine
from sqlalchemy.orm import scoped_session, sessionmaker
from sqlalchemy.ext.declarative import declarative_base

engine = create_engine('sqlite:////tmp/test.db', \
 convert_unicode=True)
db_session = scoped_session(sessionmaker(autocommit=False,
 autoflush=False,
 bind=engine))
Base = declarative_base()
Base.query = db_session.query_property()

def init_db():
 # import all modules here that might define models so that
 # they will be registered properly on the metadata. Otherwise
 # you will have to import them first before calling init_db()
 import models
 Base.metadata.create_all(bind=engine)

	models.py

from database import Base
from flask_security import UserMixin, RoleMixin
from sqlalchemy import create_engine
from sqlalchemy.orm import relationship, backref
from sqlalchemy import Boolean, DateTime, Column, Integer, \
 String, ForeignKey

class RolesUsers(Base):
 __tablename__ = 'roles_users'
 id = Column(Integer(), primary_key=True)
 user_id = Column('user_id', Integer(), ForeignKey('user.id'))
 role_id = Column('role_id', Integer(), ForeignKey('role.id'))

class Role(Base, RoleMixin):
 __tablename__ = 'role'
 id = Column(Integer(), primary_key=True)
 name = Column(String(80), unique=True)
 description = Column(String(255))

class User(Base, UserMixin):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 email = Column(String(255), unique=True)
 username = Column(String(255))
 password = Column(String(255))
 last_login_at = Column(DateTime())
 current_login_at = Column(DateTime())
 last_login_ip = Column(String(100))
 current_login_ip = Column(String(100))
 login_count = Column(Integer)
 active = Column(Boolean())
 confirmed_at = Column(DateTime())
 roles = relationship('Role', secondary='roles_users',
 backref=backref('users', lazy='dynamic'))

Basic MongoEngine Application

MongoEngine Install requirements

$ mkvirtualenv <your-app-name>
$ pip install flask-security flask-mongoengine

MongoEngine Application

The following code sample illustrates how to get started as quickly as
possible using MongoEngine:

from flask import Flask, render_template
from flask_mongoengine import MongoEngine
from flask_security import Security, MongoEngineUserDatastore, \
 UserMixin, RoleMixin, login_required

Create app
app = Flask(__name__)
app.config['DEBUG'] = True
app.config['SECRET_KEY'] = 'super-secret'

MongoDB Config
app.config['MONGODB_DB'] = 'mydatabase'
app.config['MONGODB_HOST'] = 'localhost'
app.config['MONGODB_PORT'] = 27017

Create database connection object
db = MongoEngine(app)

class Role(db.Document, RoleMixin):
 name = db.StringField(max_length=80, unique=True)
 description = db.StringField(max_length=255)

class User(db.Document, UserMixin):
 email = db.StringField(max_length=255)
 password = db.StringField(max_length=255)
 active = db.BooleanField(default=True)
 confirmed_at = db.DateTimeField()
 roles = db.ListField(db.ReferenceField(Role), default=[])

Setup Flask-Security
user_datastore = MongoEngineUserDatastore(db, User, Role)
security = Security(app, user_datastore)

Create a user to test with
@app.before_first_request
def create_user():
 user_datastore.create_user(email='matt@nobien.net', password='password')

Views
@app.route('/')
@login_required
def home():
 return render_template('index.html')

if __name__ == '__main__':
 app.run()

Basic Peewee Application

Peewee Install requirements

$ mkvirtualenv <your-app-name>
$ pip install flask-security flask-peewee

Peewee Application

The following code sample illustrates how to get started as quickly as
possible using Peewee:

from flask import Flask, render_template
from flask_peewee.db import Database
from peewee import *
from flask_security import Security, PeeweeUserDatastore, \
 UserMixin, RoleMixin, login_required

Create app
app = Flask(__name__)
app.config['DEBUG'] = True
app.config['SECRET_KEY'] = 'super-secret'
app.config['DATABASE'] = {
 'name': 'example.db',
 'engine': 'peewee.SqliteDatabase',
}

Create database connection object
db = Database(app)

class Role(db.Model, RoleMixin):
 name = CharField(unique=True)
 description = TextField(null=True)

class User(db.Model, UserMixin):
 email = TextField()
 password = TextField()
 active = BooleanField(default=True)
 confirmed_at = DateTimeField(null=True)

class UserRoles(db.Model):
 # Because peewee does not come with built-in many-to-many
 # relationships, we need this intermediary class to link
 # user to roles.
 user = ForeignKeyField(User, related_name='roles')
 role = ForeignKeyField(Role, related_name='users')
 name = property(lambda self: self.role.name)
 description = property(lambda self: self.role.description)

Setup Flask-Security
user_datastore = PeeweeUserDatastore(db, User, Role, UserRoles)
security = Security(app, user_datastore)

Create a user to test with
@app.before_first_request
def create_user():
 for Model in (Role, User, UserRoles):
 Model.drop_table(fail_silently=True)
 Model.create_table(fail_silently=True)
 user_datastore.create_user(email='matt@nobien.net', password='password')

Views
@app.route('/')
@login_required
def home():
 return render_template('index.html')

if __name__ == '__main__':
 app.run()

Mail Configuration

Flask-Security integrates with Flask-Mail to handle all email
communications between user and site, so it’s important to configure
Flask-Mail with your email server details so Flask-Security can talk
with Flask-Mail correctly.

The following code illustrates a basic setup, which could be added to
the basic application code in the previous section:

At top of file
from flask_mail import Mail

After 'Create app'
app.config['MAIL_SERVER'] = 'smtp.example.com'
app.config['MAIL_PORT'] = 465
app.config['MAIL_USE_SSL'] = True
app.config['MAIL_USERNAME'] = 'username'
app.config['MAIL_PASSWORD'] = 'password'
mail = Mail(app)

To learn more about the various Flask-Mail settings to configure it to
work with your particular email server configuration, please see the
Flask-Mail documentation [http://packages.python.org/Flask-Mail/].

Proxy Configuration

The user tracking features need an additional configuration
in HTTP proxy environment. The following code illustrates a setup
with a single HTTP proxy in front of the web application:

At top of file
from werkzeug.config.fixers import ProxyFix

After 'Create app'
app.wsgi_app = ProxyFix(app.wsgi_app, num_proxies=1)

To learn more about the ProxyFix middleware, please see the
Werkzeug documentation [http://werkzeug.pocoo.org/docs/latest/contrib/fixers/#werkzeug.contrib.fixers.ProxyFix].

Models

Flask-Security assumes you’ll be using libraries such as SQLAlchemy,
MongoEngine, Peewee or PonyORM to define a data model that includes a User
and Role model. The fields on your models must follow a particular convention
depending on the functionality your app requires. Aside from this, you’re free
to add any additional fields to your model(s) if you want. At the bare minimum
your User and Role model should include the following fields:

User

	id

	email

	password

	active

Role

	id

	name

	description

Additional Functionality

Depending on the application’s configuration, additional fields may need to be
added to your User model.

Confirmable

If you enable account confirmation by setting your application’s
SECURITY_CONFIRMABLE configuration value to True, your User model will
require the following additional field:

	confirmed_at

Trackable

If you enable user tracking by setting your application’s SECURITY_TRACKABLE
configuration value to True, your User model will require the following
additional fields:

	last_login_at

	current_login_at

	last_login_ip

	current_login_ip

	login_count

Custom User Payload

If you want a custom payload after Register or Login an user, define
the method get_security_payload in your User model. The method must return a
serializable object:

class User(db.Model, UserMixin):
 id = db.Column(db.Integer, primary_key=True)
 email = TextField()
 password = TextField()
 active = BooleanField(default=True)
 confirmed_at = DateTimeField(null=True)
 name = db.Column(db.String(80))

 # Custom User Payload
 def get_security_payload(self):
 return {
 'id': self.id,
 'name': self.name,
 'email': self.email
 }

Customizing Views

Flask-Security bootstraps your application with various views for handling its
configured features to get you up and running as quickly as possible. However,
you’ll probably want to change the way these views look to be more in line with
your application’s visual design.

Views

Flask-Security is packaged with a default template for each view it presents to
a user. Templates are located within a subfolder named security. The
following is a list of view templates:

	security/forgot_password.html

	security/login_user.html

	security/register_user.html

	security/reset_password.html

	security/change_password.html

	security/send_confirmation.html

	security/send_login.html

Overriding these templates is simple:

	Create a folder named security within your application’s templates folder

	Create a template with the same name for the template you wish to override

You can also specify custom template file paths in the configuration.

Each template is passed a template context object that includes the following,
including the objects/values that are passed to the template by the main
Flask application context processor:

	<template_name>_form: A form object for the view

	security: The Flask-Security extension object

To add more values to the template context, you can specify a context processor
for all views or a specific view. For example:

security = Security(app, user_datastore)

This processor is added to all templates
@security.context_processor
def security_context_processor():
 return dict(hello="world")

This processor is added to only the register view
@security.register_context_processor
def security_register_processor():
 return dict(something="else")

The following is a list of all the available context processor decorators:

	context_processor: All views

	forgot_password_context_processor: Forgot password view

	login_context_processor: Login view

	register_context_processor: Register view

	reset_password_context_processor: Reset password view

	change_password_context_processor: Change password view

	send_confirmation_context_processor: Send confirmation view

	send_login_context_processor: Send login view

Forms

All forms can be overridden. For each form used, you can specify a
replacement class. This allows you to add extra fields to the
register form or override validators:

from flask_security.forms import RegisterForm

class ExtendedRegisterForm(RegisterForm):
 first_name = StringField('First Name', [Required()])
 last_name = StringField('Last Name', [Required()])

security = Security(app, user_datastore,
 register_form=ExtendedRegisterForm)

For the register_form and confirm_register_form, each field is
passed to the user model (as kwargs) when a user is created. In the
above case, the first_name and last_name fields are passed
directly to the model, so the model should look like:

class User(db.Model, UserMixin):
 id = db.Column(db.Integer, primary_key=True)
 email = db.Column(db.String(255), unique=True)
 password = db.Column(db.String(255))
 first_name = db.Column(db.String(255))
 last_name = db.Column(db.String(255))

The following is a list of all the available form overrides:

	login_form: Login form

	confirm_register_form: Confirmable register form

	register_form: Register form

	forgot_password_form: Forgot password form

	reset_password_form: Reset password form

	change_password_form: Change password form

	send_confirmation_form: Send confirmation form

	passwordless_login_form: Passwordless login form

Emails

Flask-Security is also packaged with a default template for each email that it
may send. Templates are located within the subfolder named security/email.
The following is a list of email templates:

	security/email/confirmation_instructions.html

	security/email/confirmation_instructions.txt

	security/email/login_instructions.html

	security/email/login_instructions.txt

	security/email/reset_instructions.html

	security/email/reset_instructions.txt

	security/email/reset_notice.html

	security/email/change_notice.txt

	security/email/change_notice.html

	security/email/reset_notice.txt

	security/email/welcome.html

	security/email/welcome.txt

Overriding these templates is simple:

	Create a folder named security within your application’s templates folder

	Create a folder named email within the security folder

	Create a template with the same name for the template you wish to override

Each template is passed a template context object that includes values for any
links that are required in the email. If you require more values in the
templates, you can specify an email context processor with the
mail_context_processor decorator. For example:

security = Security(app, user_datastore)

This processor is added to all emails
@security.mail_context_processor
def security_mail_processor():
 return dict(hello="world")

Emails with Celery

Sometimes it makes sense to send emails via a task queue, such as Celery [http://www.celeryproject.org/].
To delay the sending of emails, you can use the @security.send_mail_task
decorator like so:

Setup the task
@celery.task
def send_security_email(msg):
 # Use the Flask-Mail extension instance to send the incoming ``msg`` parameter
 # which is an instance of `flask_mail.Message`
 mail.send(msg)

@security.send_mail_task
def delay_security_email(msg):
 send_security_email.delay(msg)

If factory method is going to be used for initialization, use _SecurityState
object returned by init_app method to initialize Celery tasks intead of using
security.send_mail_task directly like so:

from flask import Flask
from flask_mail import Mail
from flask_security import Security, SQLAlchemyUserDatastore
from celery import Celery

mail = Mail()
security = Security()
celery = Celery()

def create_app(config):
 """Initialize Flask instance."""

 app = Flask(__name__)
 app.config.from_object(config)

 @celery.task
 def send_flask_mail(msg):
 mail.send(msg)

 mail.init_app(app)
 datastore = SQLAlchemyUserDatastore(db, User, Role)
 security_ctx = security.init_app(app, datastore)

 # Flexible way for defining custom mail sending task.
 @security_ctx.send_mail_task
 def delay_flask_security_mail(msg):
 send_flask_mail.delay(msg)

 # A shortcurt.
 security_ctx.send_mail_task(send_flask_mail.delay)

 return app

Note that flask_mail.Message may not be serialized as an argument passed to
Celery. The practical way with custom serialization may look like so:

@celery.task
def send_flask_mail(**kwargs):
 mail.send(Message(**kwargs))

@security_ctx.send_mail_task
def delay_flask_security_mail(msg):
 send_flask_mail.delay(subject=msg.subject, sender=msg.sender,
 recipients=msg.recipients, body=msg.body,
 html=msg.html)

API

Core

	
class flask_security.core.Security(app=None, datastore=None, **kwargs)

	The Security class initializes the Flask-Security extension.

	Parameters:	
	app – The application.

	datastore – An instance of a user datastore.

	
init_app(app, datastore=None, register_blueprint=True, login_form=None, confirm_register_form=None, register_form=None, forgot_password_form=None, reset_password_form=None, change_password_form=None, send_confirmation_form=None, passwordless_login_form=None, anonymous_user=None)

	Initializes the Flask-Security extension for the specified
application and datastore implentation.

	Parameters:	
	app – The application.

	datastore – An instance of a user datastore.

	register_blueprint – to register the Security blueprint or not.

	
flask_security.core.current_user

	A proxy for the current user.

Protecting Views

	
flask_security.decorators.login_required(func)

	If you decorate a view with this, it will ensure that the current user is
logged in and authenticated before calling the actual view. (If they are
not, it calls the LoginManager.unauthorized callback.) For
example:

@app.route('/post')
@login_required
def post():
 pass

If there are only certain times you need to require that your user is
logged in, you can do so with:

if not current_user.is_authenticated:
 return current_app.login_manager.unauthorized()

...which is essentially the code that this function adds to your views.

It can be convenient to globally turn off authentication when unit testing.
To enable this, if the application configuration variable LOGIN_DISABLED
is set to True, this decorator will be ignored.

Note

Per W3 guidelines for CORS preflight requests [http://www.w3.org/TR/cors/#cross-origin-request-with-preflight-0],
HTTP OPTIONS requests are exempt from login checks.

	Parameters:	func (function) – The view function to decorate.

	
flask_security.decorators.roles_required(*roles)

	Decorator which specifies that a user must have all the specified roles.
Example:

@app.route('/dashboard')
@roles_required('admin', 'editor')
def dashboard():
 return 'Dashboard'

The current user must have both the admin role and editor role in order
to view the page.

	Parameters:	args – The required roles.

	
flask_security.decorators.roles_accepted(*roles)

	Decorator which specifies that a user must have at least one of the
specified roles. Example:

@app.route('/create_post')
@roles_accepted('editor', 'author')
def create_post():
 return 'Create Post'

The current user must have either the editor role or author role in
order to view the page.

	Parameters:	args – The possible roles.

	
flask_security.decorators.http_auth_required(realm)

	Decorator that protects endpoints using Basic HTTP authentication.
The username should be set to the user’s email address.

	Parameters:	realm – optional realm name

	
flask_security.decorators.auth_token_required(fn)

	Decorator that protects endpoints using token authentication. The token
should be added to the request by the client by using a query string
variable with a name equal to the configuration value of
SECURITY_TOKEN_AUTHENTICATION_KEY or in a request header named that of
the configuration value of SECURITY_TOKEN_AUTHENTICATION_HEADER

User Object Helpers

	
class flask_security.core.UserMixin

	Mixin for User model definitions

	
get_auth_token()

	Returns the user’s authentication token.

	
get_security_payload()

	Serialize user object as response payload.

	
has_role(role)

	Returns True if the user identifies with the specified role.

	Parameters:	role – A role name or Role instance

	
is_active

	Returns True if the user is active.

	
class flask_security.core.RoleMixin

	Mixin for Role model definitions

	
class flask_security.core.AnonymousUser

	AnonymousUser definition

	
has_role(*args)

	Returns False

Datastores

	
class flask_security.datastore.UserDatastore(user_model, role_model)

	Abstracted user datastore.

	Parameters:	
	user_model – A user model class definition

	role_model – A role model class definition

	
activate_user(user)

	Activates a specified user. Returns True if a change was made.

	Parameters:	user – The user to activate

	
add_role_to_user(user, role)

	Adds a role to a user.

	Parameters:	
	user – The user to manipulate

	role – The role to add to the user

	
create_role(**kwargs)

	Creates and returns a new role from the given parameters.

	
create_user(**kwargs)

	Creates and returns a new user from the given parameters.

	
deactivate_user(user)

	Deactivates a specified user. Returns True if a change was made.

	Parameters:	user – The user to deactivate

	
delete_user(user)

	Deletes the specified user.

	Parameters:	user – The user to delete

	
find_or_create_role(name, **kwargs)

	Returns a role matching the given name or creates it with any
additionally provided parameters.

	
find_role(*args, **kwargs)

	Returns a role matching the provided name.

	
find_user(*args, **kwargs)

	Returns a user matching the provided parameters.

	
get_user(id_or_email)

	Returns a user matching the specified ID or email address.

	
remove_role_from_user(user, role)

	Removes a role from a user.

	Parameters:	
	user – The user to manipulate

	role – The role to remove from the user

	
toggle_active(user)

	Toggles a user’s active status. Always returns True.

	
class flask_security.datastore.SQLAlchemyUserDatastore(db, user_model, role_model)

	A SQLAlchemy datastore implementation for Flask-Security that assumes the
use of the Flask-SQLAlchemy extension.

	
activate_user(user)

	Activates a specified user. Returns True if a change was made.

	Parameters:	user – The user to activate

	
add_role_to_user(user, role)

	Adds a role to a user.

	Parameters:	
	user – The user to manipulate

	role – The role to add to the user

	
create_role(**kwargs)

	Creates and returns a new role from the given parameters.

	
create_user(**kwargs)

	Creates and returns a new user from the given parameters.

	
deactivate_user(user)

	Deactivates a specified user. Returns True if a change was made.

	Parameters:	user – The user to deactivate

	
delete_user(user)

	Deletes the specified user.

	Parameters:	user – The user to delete

	
find_or_create_role(name, **kwargs)

	Returns a role matching the given name or creates it with any
additionally provided parameters.

	
remove_role_from_user(user, role)

	Removes a role from a user.

	Parameters:	
	user – The user to manipulate

	role – The role to remove from the user

	
toggle_active(user)

	Toggles a user’s active status. Always returns True.

	
class flask_security.datastore.MongoEngineUserDatastore(db, user_model, role_model)

	A MongoEngine datastore implementation for Flask-Security that assumes
the use of the Flask-MongoEngine extension.

	
activate_user(user)

	Activates a specified user. Returns True if a change was made.

	Parameters:	user – The user to activate

	
add_role_to_user(user, role)

	Adds a role to a user.

	Parameters:	
	user – The user to manipulate

	role – The role to add to the user

	
create_role(**kwargs)

	Creates and returns a new role from the given parameters.

	
create_user(**kwargs)

	Creates and returns a new user from the given parameters.

	
deactivate_user(user)

	Deactivates a specified user. Returns True if a change was made.

	Parameters:	user – The user to deactivate

	
delete_user(user)

	Deletes the specified user.

	Parameters:	user – The user to delete

	
find_or_create_role(name, **kwargs)

	Returns a role matching the given name or creates it with any
additionally provided parameters.

	
remove_role_from_user(user, role)

	Removes a role from a user.

	Parameters:	
	user – The user to manipulate

	role – The role to remove from the user

	
toggle_active(user)

	Toggles a user’s active status. Always returns True.

	
class flask_security.datastore.PeeweeUserDatastore(db, user_model, role_model, role_link)

	A PeeweeD datastore implementation for Flask-Security that assumes
the use of the Flask-Peewee extension.

	Parameters:	
	user_model – A user model class definition

	role_model – A role model class definition

	role_link – A model implementing the many-to-many user-role relation

	
activate_user(user)

	Activates a specified user. Returns True if a change was made.

	Parameters:	user – The user to activate

	
add_role_to_user(user, role)

	Adds a role to a user.

	Parameters:	
	user – The user to manipulate

	role – The role to add to the user

	
create_role(**kwargs)

	Creates and returns a new role from the given parameters.

	
create_user(**kwargs)

	Creates and returns a new user from the given parameters.

	
deactivate_user(user)

	Deactivates a specified user. Returns True if a change was made.

	Parameters:	user – The user to deactivate

	
delete_user(user)

	Deletes the specified user.

	Parameters:	user – The user to delete

	
find_or_create_role(name, **kwargs)

	Returns a role matching the given name or creates it with any
additionally provided parameters.

	
remove_role_from_user(user, role)

	Removes a role from a user.

	Parameters:	
	user – The user to manipulate

	role – The role to remove from the user

	
toggle_active(user)

	Toggles a user’s active status. Always returns True.

	
class flask_security.datastore.PonyUserDatastore(db, user_model, role_model)

	A Pony ORM datastore implementation for Flask-Security.

Code primarily from https://github.com/ET-CS but taken over after
being abandoned.

	
activate_user(user)

	Activates a specified user. Returns True if a change was made.

	Parameters:	user – The user to activate

	
deactivate_user(user)

	Deactivates a specified user. Returns True if a change was made.

	Parameters:	user – The user to deactivate

	
delete_user(user)

	Deletes the specified user.

	Parameters:	user – The user to delete

	
find_or_create_role(name, **kwargs)

	Returns a role matching the given name or creates it with any
additionally provided parameters.

	
remove_role_from_user(user, role)

	Removes a role from a user.

	Parameters:	
	user – The user to manipulate

	role – The role to remove from the user

	
toggle_active(user)

	Toggles a user’s active status. Always returns True.

Utils

	
flask_security.utils.login_user(user, remember=None)

	Perform the login routine.

If SECURITY_TRACKABLE is used, make sure you commit changes after this
request (i.e. app.security.datastore.commit()).

	Parameters:	
	user – The user to login

	remember – Flag specifying if the remember cookie should be set.
Defaults to False

	
flask_security.utils.logout_user()

	Logs out the current.

This will also clean up the remember me cookie if it exists.

	
flask_security.utils.get_hmac(password)

	Returns a Base64 encoded HMAC+SHA512 of the password signed with
the salt specified by SECURITY_PASSWORD_SALT.

	Parameters:	password – The password to sign

	
flask_security.utils.verify_password(password, password_hash)

	Returns True if the password matches the supplied hash.

	Parameters:	
	password – A plaintext password to verify

	password_hash – The expected hash value of the password
(usually from your database)

	
flask_security.utils.verify_and_update_password(password, user)

	Returns True if the password is valid for the specified user.

Additionally, the hashed password in the database is updated if the
hashing algorithm happens to have changed.

	Parameters:	
	password – A plaintext password to verify

	user – The user to verify against

	
flask_security.utils.encrypt_password(password)

	Encrypt the specified plaintext password.

It uses the configured encryption options.

Deprecated since version 2.0.2: Use hash_password() instead.

	Parameters:	password – The plaintext password to encrypt

	
flask_security.utils.hash_password(password)

	Hash the specified plaintext password.

It uses the configured hashing options.

New in version 2.0.2.

	Parameters:	password – The plaintext password to hash

	
flask_security.utils.url_for_security(endpoint, **values)

	Return a URL for the security blueprint

	Parameters:	
	endpoint – the endpoint of the URL (name of the function)

	values – the variable arguments of the URL rule

	_external – if set to True, an absolute URL is generated. Server
address can be changed via SERVER_NAME configuration variable which
defaults to localhost.

	_anchor – if provided this is added as anchor to the URL.

	_method – if provided this explicitly specifies an HTTP method.

	
flask_security.utils.get_within_delta(key, app=None)

	Get a timedelta object from the application configuration following
the internal convention of:

<Amount of Units> <Type of Units>

Examples of valid config values:

5 days
10 minutes

	Parameters:	
	key – The config value key without the ‘SECURITY_‘ prefix

	app – Optional application to inspect. Defaults to Flask’s
current_app

	
flask_security.utils.send_mail(subject, recipient, template, **context)

	Send an email via the Flask-Mail extension.

	Parameters:	
	subject – Email subject

	recipient – Email recipient

	template – The name of the email template

	context – The context to render the template with

	
flask_security.utils.get_token_status(token, serializer, max_age=None, return_data=False)

	Get the status of a token.

	Parameters:	
	token – The token to check

	serializer – The name of the seriailzer. Can be one of the
following: confirm, login, reset

	max_age – The name of the max age config option. Can be on of
the following: CONFIRM_EMAIL, LOGIN,
RESET_PASSWORD

Signals

See the Flask documentation on signals [http://flask.pocoo.org/docs/signals/] for information on how to use these
signals in your code.

See the documentation for the signals provided by the Flask-Login and
Flask-Principal extensions. In addition to those signals, Flask-Security
sends the following signals.

	
user_registered

	Sent when a user registers on the site. In addition to the app (which is the
sender), it is passed user and confirm_token arguments.

	
user_confirmed

	Sent when a user is confirmed. In addition to the app (which is the
sender), it is passed a user argument.

	
confirm_instructions_sent

	Sent when a user requests confirmation instructions. In addition to the app
(which is the sender), it is passed a user argument.

	
login_instructions_sent

	Sent when passwordless login is used and user logs in. In addition to the app
(which is the sender), it is passed user and login_token arguments.

	
password_reset

	Sent when a user completes a password reset. In addition to the app (which is
the sender), it is passed a user argument.

	
password_changed

	Sent when a user completes a password change. In addition to the app (which is
the sender), it is passed a user argument.

	
reset_password_instructions_sent

	Sent when a user requests a password reset. In addition to the app (which is
the sender), it is passed user and token arguments.

Flask-Security Changelog

Here you can see the full list of changes between each Flask-Security release.

Version 3.0.0

Released TBD

	Fixed a bug when user clicking confirmation link after confirmation
and expiration causes confirmation email to resend. (see #556)

	Added support for I18N.

	Added options SECURITY_EMAIL_PLAINTEXT and SECURITY_EMAIL_HTML
for sending respecively plaintext and HTML version of email.

	Fixed validation when missing login information.

	Fixed condition for token extraction from JSON body.

	Better support for universal bdist wheel.

	Added port of CLI using Click configurable using options
SECURITY_CLI_USERS_NAME and SECURITY_CLI_ROLES_NAME.

	Added new configuration option SECURITY_DATETIME_FACTORY which can
be used to force default timezone for newly created datetimes.
(see mattupstate/flask-security#466)

	Better IP tracking if using Flask 0.12.

	Renamed deprecated Flask-WFT base form class.

	Added tests for custom forms configured using app config.

	Added validation and tests for next argument in logout endpoint. (see #499)

	Bumped minimal required versions of several packages.

	Extended test matric on Travis CI for minimal and released package versions.

	Added of .editorconfig and forced tests for code style.

	Fixed a security bug when validating a confirmation token, also checks
if the email that the token was created with matches the user’s current email.

	Replaced token loader with request loader.

	Changed trackable behavior of login_user when IP can not be detected from a request from ‘untrackable’ to None value.

	Use ProxyFix instead of inspecting X-Forwarded-For header.

	Fix identical problem with app as with datastore.

	Removed always-failing assertion.

	Fixed failure of init_app to set self.datastore.

	Changed to new style flask imports.

	Added proper error code when returning JSON response.

	Changed obsolette Required validator from WTForms to DataRequired. Bumped Flask-WTF to 0.13.

	Fixed missing SECURITY_SUBDOMAIN in config docs.

	Added cascade delete in PeeweeDatastore.

	Added notes to docs about SECURITY_USER_IDENTITY_ATTRIBUTES.

	Inspect value of SECURITY_UNAUTHORIZED_VIEW.

	Send password reset instructions if an attempt has expired.

	Added “Forgot password?” link to LoginForm description.

	Upgraded passlib, and removed bcrypt version restriction.

	Removed a duplicate line (‘retype_password’: ‘Retype Password’) in forms.py.

	Various documentation improvement.

Version 1.7.5

Released December 2nd 2015

	Added SECURITY_TOKEN_MAX_AGE configuration setting

	Fixed calls to SQLAlchemyUserDatastore.get_user(None) (this now returns False instead of raising a TypeError

	Fixed URL generation adding extra slashes in some cases (see GitHub #343)

	Fixed handling of trackable IP addresses when the X-Forwarded-For header contains multiple values

	Include WWW-Authenticate headers in @auth_required authentication checks

	Fixed error when check_token function is used with a json list

	Added support for custom AnonymousUser classes

	Restricted forgot_password endpoint to anonymous users

	Allowed unauthorized callback to be overridden

	Fixed issue where passwords cannot be reset if currently set to None

	Ensured that password reset tokens are invalidated after use

	Updated is_authenticated and is_active functions to support Flask-Login changes

	Various documentation improvements

Version 1.7.4

Released October 13th 2014

	Fixed a bug related to changing existing passwords from plaintext to hashed

	Fixed a bug in form validation that did not enforce case insensivitiy

	Fixed a bug with validating redirects

Version 1.7.3

Released June 10th 2014

	Fixed a bug where redirection to SECURITY_POST_LOGIN_VIEW was not respected

	Fixed string encoding in various places to be friendly to unicode

	Now using werkzeug.security.safe_str_cmp to check tokens

	Removed user information from JSON output on /reset responses

	Added Python 3.4 support

Version 1.7.2

Released May 6th 2014

	Updated IP tracking to check for X-Forwarded-For header

	Fixed a bug regarding the re-hashing of passwords with a new algorithm

	Fixed a bug regarding the password_changed signal.

Version 1.7.1

Released January 14th 2014

	Fixed a bug where passwords would fail to verify when specifying a password hash algorithm

Version 1.7.0

Released January 10th 2014

	Python 3.3 support!

	Dependency updates

	Fixed a bug when SECURITY_LOGIN_WITHOUT_CONFIRMATION = True did not allow users to log in

	Added SECURITY_SEND_PASSWORD_RESET_NOTICE_EMAIL configuraiton option to optionally send password reset notice emails

	Add documentation for @security.send_mail_task

	Move to request.get_json as request.json is now deprecated in Flask

	Fixed a bug when using AJAX to change a user’s password

	Added documentation for select functions in the flask_security.utils module

	Fixed a bug in flask_security.forms.NextFormMixin

	Added CHANGE_PASSWORD_TEMPLATE configuration option to optionally specify a different change password template

	Added the ability to specify addtional fields on the user model to be used for identifying the user via the USER_IDENTITY_ATTRIBUTES configuration option

	An error is now shown if a user tries to change their password and the password is the same as before. The message can be customed with the SECURITY_MSG_PASSWORD_IS_SAME configuration option

	Fixed a bug in MongoEngineUserDatastore where user model would not be updated when using the add_role_to_user method

	Added SECURITY_SEND_PASSWORD_CHANGE_EMAIL configuration option to optionally disable password change email from being sent

	Fixed a bug in the find_or_create_role method of the PeeWee datastore

	Removed pypy tests

	Fixed some tests

	Include CHANGES and LICENSE in MANIFEST.in

	A bit of documentation cleanup

	A bit of code cleanup including removal of unnecessary utcnow call and simplification of get_max_age method

Version 1.6.9

Released August 20th 2013

	Fix bug in SQLAlchemy datastore’s get_user function

	Fix bug in PeeWee datastore’s remove_role_from_user function

	Fixed import error caused by new Flask-WTF release

Version 1.6.8

Released August 1st 2013

	Fixed bug with case sensitivity of email address during login

	Code cleanup regarding token_callback

	Ignore validation errors in find_user function for MongoEngineUserDatastore

Version 1.6.7

Released July 11th 2013

	Made password length form error message configurable

	Fixed email confirmation bug that prevented logged in users from confirming their email

Version 1.6.6

Released June 28th 2013

	Fixed dependency versions

Version 1.6.5

Released June 20th 2013

	Fixed bug in flask.ext.security.confirmable.generate_confirmation_link

Version 1.6.4

Released June 18th 2013

	Added SECURITY_DEFAULT_REMEMBER_ME configuration value to unify behavior between endpoints

	Fixed Flask-Login dependency problem

	Added optional next parameter to registration endpoint, similar to that of login

Version 1.6.3

Released May 8th 2013

	Fixed bug in regards to imports with latest version of MongoEngine

Version 1.6.2

Released April 4th 2013

	Fixed bug with http basic auth

Version 1.6.1

Released April 3rd 2013

	Fixed bug with signals

Version 1.6.0

Released March 13th 2013

	Added Flask-Pewee support

	Password hashing is now more flexible and can be changed to a different type at will

	Flask-Login messages are configurable

	AJAX requests must now send a CSRF token for security reasons

	Form messages are now configurable

	Forms can now be extended with more fields

	Added change password endpoint

	Added the user to the request context when successfully authenticated via http basic and token auth

	The Flask-Security blueprint subdomain is now configurable

	Redirects to other domains are now not allowed during requests that may redirect

	Template paths can be configured

	The welcome/register email can now optionally be sent to the user

	Passwords can now contain non-latin characters

	Fixed a bug when confirming an account but the account has been deleted

Version 1.5.4

Released January 6th 2013

	Fix bug in forms with csrf_enabled parameter not accounting attempts to login using JSON data

Version 1.5.3

Released December 23rd 2012

	Change dependency requirement

Version 1.5.2

Released December 11th 2012

	Fix a small bug in flask_security.utils.login_user method

Version 1.5.1

Released November 26th 2012

	Fixed bug with next form variable

	Added better documentation regarding Flask-Mail configuration

	Added ability to configure email subjects

Version 1.5.0

Released October 11th 2012

	Major release. Upgrading from previous versions will require a bit of work to
accomodate API changes. See documentation for a list of new features and for
help on how to upgrade.

Version 1.2.3

Released June 12th 2012

	Fixed a bug in the RoleMixin eq/ne functions

Version 1.2.2

Released April 27th 2012

	Fixed bug where roles_required and roles_accepted did not pass the next
argument to the login view

Version 1.2.1

Released March 28th 2012

	Added optional user model mixin parameter for datastores

	Added CreateRoleCommand to available Flask-Script commands

Version 1.2.0

Released March 12th 2012

	Added configuration option SECURITY_FLASH_MESSAGES which can be set to a
boolean value to specify if Flask-Security should flash messages or not.

Version 1.1.0

Initial release

 Flask-Security is written and maintained by Matt Wright and
various contributors:

Development Lead

	Matt Wright <matt+github@nobien.net>

Patches and Suggestions

Alexander Sukharev
Alexey Poryadin
Andrew J. Camenga
Anthony Plunkett
Artem Andreev
Catherine Wise
Chris Haines
Christophe Simonis
David Ignacio
Eric Butler
Eskil Heyn Olsen
Iuri de Silvio
Jay Goel
Jiri Kuncar
Joe Esposito
Joe Hand
Josh Purvis
Kostyantyn Leschenko
Luca Invernizzi
Manuel Ebert
Martin Maillard
Paweł Krześniak
Robert Clark
Rodrigue Cloutier
Rotem Yaari
Srijan Choudhary
Tristan Escalada
Vadim Kotov
Walt Askew
John Paraskevopoulos

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	activate_user() (flask_security.datastore.MongoEngineUserDatastore method)

 	(flask_security.datastore.PeeweeUserDatastore method)

 	(flask_security.datastore.PonyUserDatastore method)

 	(flask_security.datastore.SQLAlchemyUserDatastore method)

 	(flask_security.datastore.UserDatastore method)

 	
 	add_role_to_user() (flask_security.datastore.MongoEngineUserDatastore method)

 	(flask_security.datastore.PeeweeUserDatastore method)

 	(flask_security.datastore.SQLAlchemyUserDatastore method)

 	(flask_security.datastore.UserDatastore method)

 	AnonymousUser (class in flask_security.core)

 	auth_token_required() (in module flask_security.decorators)

C

 	
 	confirm_instructions_sent (built-in variable)

 	create_role() (flask_security.datastore.MongoEngineUserDatastore method)

 	(flask_security.datastore.PeeweeUserDatastore method)

 	(flask_security.datastore.SQLAlchemyUserDatastore method)

 	(flask_security.datastore.UserDatastore method)

 	
 	create_user() (flask_security.datastore.MongoEngineUserDatastore method)

 	(flask_security.datastore.PeeweeUserDatastore method)

 	(flask_security.datastore.SQLAlchemyUserDatastore method)

 	(flask_security.datastore.UserDatastore method)

D

 	
 	deactivate_user() (flask_security.datastore.MongoEngineUserDatastore method)

 	(flask_security.datastore.PeeweeUserDatastore method)

 	(flask_security.datastore.PonyUserDatastore method)

 	(flask_security.datastore.SQLAlchemyUserDatastore method)

 	(flask_security.datastore.UserDatastore method)

 	
 	delete_user() (flask_security.datastore.MongoEngineUserDatastore method)

 	(flask_security.datastore.PeeweeUserDatastore method)

 	(flask_security.datastore.PonyUserDatastore method)

 	(flask_security.datastore.SQLAlchemyUserDatastore method)

 	(flask_security.datastore.UserDatastore method)

E

 	
 	encrypt_password() (in module flask_security.utils)

F

 	
 	find_or_create_role() (flask_security.datastore.MongoEngineUserDatastore method)

 	(flask_security.datastore.PeeweeUserDatastore method)

 	(flask_security.datastore.PonyUserDatastore method)

 	(flask_security.datastore.SQLAlchemyUserDatastore method)

 	(flask_security.datastore.UserDatastore method)

 	
 	find_role() (flask_security.datastore.UserDatastore method)

 	find_user() (flask_security.datastore.UserDatastore method)

 	flask_security.core.current_user (built-in variable)

G

 	
 	get_auth_token() (flask_security.core.UserMixin method)

 	get_hmac() (in module flask_security.utils)

 	get_security_payload() (flask_security.core.UserMixin method)

 	
 	get_token_status() (in module flask_security.utils)

 	get_user() (flask_security.datastore.UserDatastore method)

 	get_within_delta() (in module flask_security.utils)

H

 	
 	has_role() (flask_security.core.AnonymousUser method)

 	(flask_security.core.UserMixin method)

 	
 	hash_password() (in module flask_security.utils)

 	http_auth_required() (in module flask_security.decorators)

I

 	
 	init_app() (flask_security.core.Security method)

 	
 	is_active (flask_security.core.UserMixin attribute)

L

 	
 	login_instructions_sent (built-in variable)

 	login_required() (in module flask_security.decorators)

 	
 	login_user() (in module flask_security.utils)

 	logout_user() (in module flask_security.utils)

M

 	
 	MongoEngineUserDatastore (class in flask_security.datastore)

P

 	
 	password_changed (built-in variable)

 	password_reset (built-in variable)

 	
 	PeeweeUserDatastore (class in flask_security.datastore)

 	PonyUserDatastore (class in flask_security.datastore)

R

 	
 	remove_role_from_user() (flask_security.datastore.MongoEngineUserDatastore method)

 	(flask_security.datastore.PeeweeUserDatastore method)

 	(flask_security.datastore.PonyUserDatastore method)

 	(flask_security.datastore.SQLAlchemyUserDatastore method)

 	(flask_security.datastore.UserDatastore method)

 	
 	reset_password_instructions_sent (built-in variable)

 	RoleMixin (class in flask_security.core)

 	roles_accepted() (in module flask_security.decorators)

 	roles_required() (in module flask_security.decorators)

S

 	
 	Security (class in flask_security.core)

 	
 	send_mail() (in module flask_security.utils)

 	SQLAlchemyUserDatastore (class in flask_security.datastore)

T

 	
 	toggle_active() (flask_security.datastore.MongoEngineUserDatastore method)

 	(flask_security.datastore.PeeweeUserDatastore method)

 	(flask_security.datastore.PonyUserDatastore method)

 	(flask_security.datastore.SQLAlchemyUserDatastore method)

 	(flask_security.datastore.UserDatastore method)

U

 	
 	url_for_security() (in module flask_security.utils)

 	user_confirmed (built-in variable)

 	
 	user_registered (built-in variable)

 	UserDatastore (class in flask_security.datastore)

 	UserMixin (class in flask_security.core)

V

 	
 	verify_and_update_password() (in module flask_security.utils)

 	
 	verify_password() (in module flask_security.utils)

 _static/comment-close.png

_static/comment-bright.png

_static/logo-full.png
+_ FlaskSecurity

[\

_static/comment.png

_static/minus.png

_static/file.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		Flask-Security

 		Features

 		Session Based Authentication

 		Role/Identity Based Access

 		Password Hashing

 		Basic HTTP Authentication

 		Token Authentication

 		Email Confirmation

 		Password Reset/Recovery

 		User Registration

 		Login Tracking

 		JSON/Ajax Support

 		Command Line Interface

 		Configuration

 		Core

 		URLs and Views

 		Template Paths

 		Feature Flags

 		Email

 		Miscellaneous

 		Messages

 		Quick Start

 		Basic SQLAlchemy Application

 		SQLAlchemy Install requirements

 		SQLAlchemy Application

 		Basic SQLAlchemy Application with session

 		SQLAlchemy Install requirements

 		SQLAlchemy Application

 		Basic MongoEngine Application

 		MongoEngine Install requirements

 		MongoEngine Application

 		Basic Peewee Application

 		Peewee Install requirements

 		Peewee Application

 		Mail Configuration

 		Proxy Configuration

 		Models

 		Additional Functionality

 		Confirmable

 		Trackable

 		Custom User Payload

 		Customizing Views

 		Views

 		Forms

 		Emails

 		Emails with Celery

 		API

 		Core

 		Protecting Views

 		User Object Helpers

 		Datastores

 		Utils

 		Signals

 		Flask-Security Changelog

 		Version 3.0.0

 		Version 1.7.5

 		Version 1.7.4

 		Version 1.7.3

 		Version 1.7.2

 		Version 1.7.1

 		Version 1.7.0

 		Version 1.6.9

 		Version 1.6.8

 		Version 1.6.7

 		Version 1.6.6

 		Version 1.6.5

 		Version 1.6.4

 		Version 1.6.3

 		Version 1.6.2

 		Version 1.6.1

 		Version 1.6.0

 		Version 1.5.4

 		Version 1.5.3

 		Version 1.5.2

 		Version 1.5.1

 		Version 1.5.0

 		Version 1.2.3

 		Version 1.2.2

 		Version 1.2.1

 		Version 1.2.0

 		Version 1.1.0

 		Development Lead

 		Patches and Suggestions

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/logo-helmet.png

